(a) In $z=\tanh w=\frac{e^{w}-e^{-w}}{e^{w}+e^{-w}}$, try to write w in terms of z.
(b) Log is defined on $\mathbb{C} \backslash(-\infty, 0]$
$\frac{1+z}{1-z} \neq-t$ where $t \in[0, \infty)$

Thus $z \notin(-1,1)$
$\log \frac{1+z}{1-z}$ is analytic or $\mathbb{C} \backslash(-1,1)$
(a) The set is $2^{i}=e^{i \log 2}=e^{i[\ln 2+i \log 2]}$

$$
\begin{aligned}
& \quad=e^{-\operatorname{ag} 2} \cdot(\cos \ln 2+i \sin \ln 2) \\
& =\left\{e^{-2 k \pi}(\cos \ln 2+i \sin \ln 2)=k \in \mathbb{Z}\right\}
\end{aligned}
$$

(b) The principal branch of $\left(z^{2}+1\right)^{i}$ is defined on $\Omega_{0} \subset \mathbb{C} \backslash\{ \pm i\}$ where $\log \left(z^{2}+1\right)$ is defined, ie., $z^{2}+1 \notin(-\infty, 0]$ or $z^{2} \notin(-\infty,-1] \Leftrightarrow$

$$
z \notin\{i y: \quad y \in[1, \infty) \text { or } y \in(-\infty,-1]\}
$$

(c) Note that Ω_{0} above does not have $2 i \in \Omega_{0}$ Try another branch of \log, e.9., $\log _{\alpha}$ Choose a suitable α sit. $2 i \in \Omega_{1}$
(a) Do it by panametsizing L_{1} and L_{2} Then direct calculation is okay.
(b) $\left|\int_{C} \frac{d z}{z+1}\right| \leqslant \int_{C} \frac{|d z|}{|z+1|}$

Note that $|z+1|$ is the distance between z and -1 , while $z \in C$
Moreover, $\int_{c}|d z|$ is the are length.
(a) By ponametization and direct calculation.

Note. Some people thought to simply and assumed $\frac{1}{z} \neq \bar{z}$ where z is not on the mique circle.
(b) You may fix the parametrization Then use different branches of $z^{1 / 3}$. There should be many tranches, carefulness is needed to give 3 different answers.
(a) Choose an antidenivatives and apply independent of choices, and so use the initial and final points.
(b) simply apply Candy-Gousat Theorem or Cancly Theorem suitably.
(c) Verify that

$$
\frac{P^{\prime}(z)}{P(z)}=\frac{1}{z-z_{1}}+\cdots+\frac{1}{z-z_{p}}
$$

This it can he easy to find the integral

